Technical Note

Date

09/07/2024

Project Proposed Temporary Public Vehicle Park and Shop and

Services at Lot 896 RP (Part) in DD 83, Ma Liu Shui San

Tsuen, Fanling

Note Traffic Review

1 Introduction

1.1 The Applicant proposes a temporary public vehicle park cum shop and services at Lot 896 RP (Part) in DD 83, Ma Liu Shui San Tsuen, Fanling, with location presented in **Figure 1**.

Figure 1 Site Location

1.2 To support the planning application (A/NE-LYT/825) while to address TD's comment, a traffic review covering junction capacity analysis at J/O Sha Tau Kok Road / Lung Ma Road (J1) and Lung Ma Road / Hai Wing Road (J2), as well as link capacity at Lung Ma Road (L1) is conducted, with findings summarized in this Technical Note.

2 Estimated Development Traffic Flows

2.1 Based on the latest information, the peak hour development traffic for the application site is summarized in **Table 2.1**.

Table 2.1 Peak Hour Development Traffic

	AM Peak Hour		PM Peak Hour		
	ln	Out	ln	Out	
Trip Generation (pcu/hr)	0	2	2	0	

3 Existing Traffic Condition

Existing Traffic Flows

To evaluate the existing traffic condition, surveys at J/O Sha Tau Kok Road / Lung Ma Road (J1), Lung Ma Road / Hai Wing Road (J2) and Lung Ma Road (L1) were conducted on 3 July 2024 (with survey period of 07:00-09:00 and 16:30-18:30), with the AM and PM peak hours identified to occur at 07:00-08:00 and 17:30-18:30 respectively. Assessment results are indicated in **Table 3.1** and **Table 3.2** respectively. Detailed junction calculation sheets are also presented in **Appendix B**.

Table 3.1 2024 Peak Hour Junction Capacity Assessment

J/O	Location	Туре	DFC ⁽¹⁾ for AM Peak	DFC ⁽¹⁾ for PM Peak
J1	Sha Tau Kok Road / Lung Ma Road	Roundabout	0.47	0.56
J2	Lung Ma Road / Hai Wing Road	Priority	0.05	0.04

Notes: (1) DFC = Design Flow to Capacity for roundabout and priority junction.

Table 3.2 2024 Peak Hour Road Link Capacity Assessment

No.			Design	AM P	'eak	PM Peak		
	Location	Dir	Capacity ⁽¹⁾ (veh/hr)	Flows (veh/hr)	P/Df ⁽²⁾	Flows (veh/hr)	P/Df ⁽²⁾	
	Lung Ma	NB	850	583	0.69	354	0.42	
L1	Road	SB	850	400	0.47	482	0.57	

Notes: (1

- (1) TPDM Vol 2 Table 2.4.1.1
- (2) Peak Hourly Flows/Design Flow Ratios (P/Df) for road links

3.2 The results reveal that the assessed junction and road link are currently operating satisfactorily during the peak hours.

4 Future Year Forecast

- 4.1 With the anticipated operation year of the Application Site is 2024 for operation of 3 years, the "Design Year" for this Traffic Review becomes 2027, i.e. the last operation year for the Application Site.
- 4.2 In forecasting the future traffic flows on the road network in the Study Area, due considerations are given to the following information and factors:
 - Historical traffic data from Annual Traffic Census (ATC) published by Transport Department;

- The forecast population and employment from the 2019-based Territorial Population and Employment Data Matrices (TPEDM) planning data published by Planning Department;
- Committed and planned developments in the Study Area.
- 4.3 The following steps are undertaken to derive the 2027 Peak Hour Reference Flows (i.e. without the Application Site) and Design Flows (i.e. with the Application Site):
 - 2027 Background Flows = 2024 Flows x annual growth factors
 - 2027 Reference Flows = 2027 Background Flows + additional traffic by planned and committed developments
 - 2027 Design Flows = 2027 Reference Flows + Development traffic
- 4.4 The traffic impact to be induced by the Application Site is assessed by comparing the Peak Hour Reference Traffic Flows against the Design Traffic Flows for both Design Years.

Background Traffic Growth

4.5 To gain an understanding of the historical trends of traffic growth on the nearby road network, relevant traffic data over the 5-year period of 2017 to 2022 are extracted from the Annual Traffic Census (ATC) Reports for the ATC stations in the Study Area. **Table 4-1** describes the locations of the ATC stations and provides the corresponding traffic data.

Table 4.1 Average Annual Daily Traffic from Annual Traffic Census

Station	Road	Between		2017	2018	2019	2020	2021	2022	Average Growth Rate p.a.
5660	Sha Tau	On Kui St	Wu Shek Kok nr STK	33050	33870	33630	23740	22980	22280	-7.58%
	Kok Rd		Sec School	-	2.48%	-0.71%	-29.41%	-3.20%	-3.05%	
6653	Ping Che	Sha Tau	Lin Ma	11360	11430	11820	11030	11870	11510	0.26%
	Rd	Kok Rd	Hang Rd	1	0.62%	3.41%	-6.68%	7.62%	-3.03%	
			Total	44410	45300	45450	34770	34850	33790	-5.32%
				-	2.00%	0.33%	-23.50%	0.23%	-3.04%	

Source: 2017-2022 Annual Traffic Census (ATC) Reports published by Transport Department

4.6 **Table 4.2** also presents the population and employment data in NENT (Others) population and Employment Data Matrices (TPEDM) planning data provided by Planning Department.

Table 4.2 2019-Based TPEDM for NENT (Others)

Catamani	2010	2024(1)	2026	2027(1)	2024	2021-2031
Category	2019	2024(1)	2026	2027 ⁽¹⁾	2031	Average Growth (% p.a.)
Population	1,316,700	1,399,021	1,431,950	1,524,510	1,547,650	2.90%
Employment	Employment 421,000 414,214		411,500	432,700	438,000	1.47%
Total	1,737,700	1,813,236	1,843,450	1.957.210	1,985,650	2.58%

Source: 2019-based TPEDM published by Planned Department

Note: (1)2024 and 2027 population and employment places are calculated by interpolation

4.7 For conservative, an annual growth 2.58% (adopt TPEDM growth) is adopted for this Traffic Review.

Planned and Committed Developments

4.8 Based on the information obtained from TPB website, planned and committed developments with direct traffic impact to the vicinity of the Application Site are not identified in the close vicinity of the site.

5 Future Year Traffic Assessment

Based on the Reference Flows (i.e. without Application Site) and Design Flows (i.e. with Application Site) for the Design Years, junction and link capacity assessment are undertaken and the results shown in **Table 5.1** and **Table 5.2** with detailed calculation sheets provided in **Appendix B**.

Table 5.1 2027 Peak Hour Junction Capacity Assessment

J/O	Location	Туре	DFC ⁽¹⁾ for 2027 Reference Case		,,			for 2027 n Case
			AM	PM	AM	РМ		
J1	Sha Tau Kok Road / Lung Ma Road	Roundabout	0.51	0.60	0.51	0.60		
J2	Lung Ma Road / Hai Wing Road	Priority	0.06	0.05	0.06	0.05		

Notes: (1) DFC = Design Flow to Capacity for roundabout and priority junction.

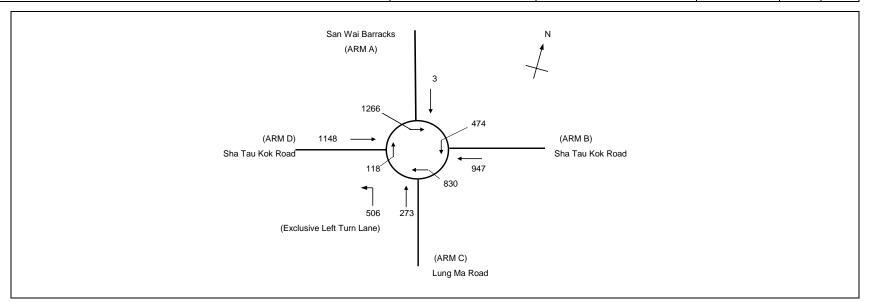
Table 5.2 2027 Peak Hour Road Link Capacity Assessment

			Design	2027 AN	/I Peak	2027 P	M Peak					
No.	Location	Dir	Capacity ⁽¹⁾ (veh/hr)	Flows (veh/hr)	P/Df ⁽²⁾	Flows (veh/hr)	P/Df ⁽²⁾					
Reference Scenario												
	Lung Ma Road	Lung Ma NB		630	0.74	382	0.45					
L1		SB	850	432	0.51	520	0.61					
Desig	ın Scenario											
	Lung Ma	NB	850	632	0.74	382	0.45					
L1	Road	SB	850	432	0.51	522	0.61					

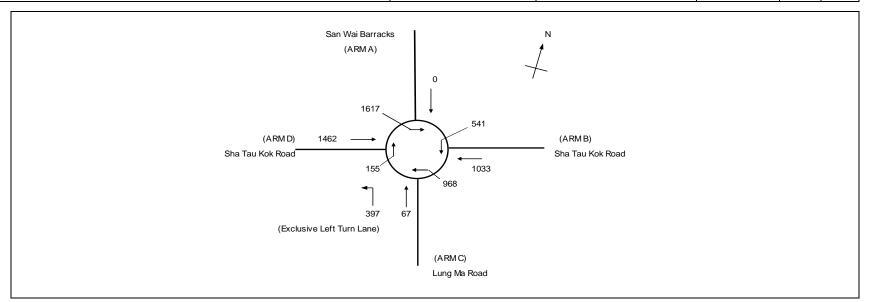
Notes:

(1) TPDM Vol 2 Table 2.4.1.1

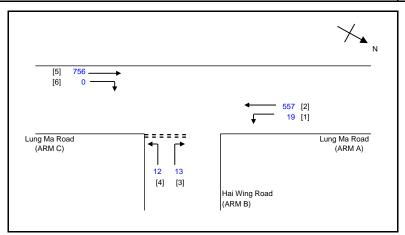
(2) Peak Hourly Flows/Design Flow Ratios (P/Df) for road links


5.2 The results indicate a trivial development traffic impact onto the assessed junction and road link, while assessed junctions and road link will operating satisfactorily during the peak hours even with the Application Site in place.

Proposed Temporary Public Vehicle Park and Shop and Services at Lot 896 RP (Part) in DD 83, Ma Liu Shui San Tsuen, Fanling Traffic Review

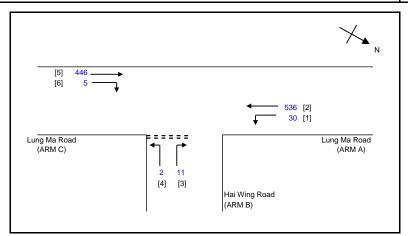

Appendix A

OZZO TECHNOLOGY (HK) LIMITED	TRAFFIC	SIGNAL CALCULATION	1	INITIALS	DATE
Proposed Temporary Public Vehicle Park and Shop and Services at Lot 896 RF	PROJECT NO.: 83007	PREPARED BY:	CW	Jul-24	
J1: Sha Tau Kok Road / Lung Ma Road	2024 AM	FILENAME :	CHECKED BY:	DP	Jul-24
2024 Observed AM Peak Hour Traffic Flows	2024_AM	_Sha Tau Kok Road_Lung Ma Road_R.xls	REVIEWED BY:	SC	Jul-24


ARM			A	В	С	D			
NPUT	PARA	AMETERS:							
V	=	Approach half width (m)	3.0	7.5	3.5	7.5			
E	=	Entry width (m)	5.5	8.0	5.5	9.0			
L	=	Effective length of flare (m)	25	30	15	25			
R	=	Entry radius (m)	50	20	60	35			
)	=	Inscribed circle diameter (m)	50	50	50	50			
4	=	Entry angle (degree)	25	35	20	25			
Q	=	Entry flow (pcu/h)	3	947	273	1148			
Qc	=	Circulating flow across entry (pcu/h)	1266	474	830	118			
OUTPI	UT PA	RAMETERS:							
S	=	Sharpness of flare = 1.6(E-V)/L	0.16	0.03	0.21	0.10			
<	=	1-0.00347(A-30)-0.978(1/R-0.05)	1.05	0.98	1.07	1.04			
X2	=	V + ((E-V)/(1+2S))	4.89	7.97	4.90	8.76			
M	=	EXP((D-60)/10)	0	0	0	0			
F	=	303*X2	1483	2416	1485	2654			
Td	=	1+(0.5/(1+M))	1.37	1.37	1.37	1.37			
Fc	=	0.21*Td(1+0.2*X2)	0.57	0.74	0.57	0.79			
Qe	=	K(F-Fc*Qc)	800	2028	1082	2659	Total In Sum =	2368	PCU
DFC	=	Design flow/Capacity = Q/Qe	0.00	0.47	0.25	0.43	DFC of Critical Approach =	0.47	

OZZO TECHNOLOGY (HK) LIMITED	TRAFFIC	INITIALS	DATE		
Proposed Temporary Public Vehicle Park and Shop and Services at Lot 896 RF	PROJECT NO.: 83007	PREPARED BY:	CW	Jul-24	
J1: Sha Tau Kok Road / Lung Ma Road	2024 PM	FILENAME :	CHECKED BY:	DP	Jul-24
2024 Observed PM Peak Hour Traffic Flows	2024_PW	_Sha Tau Kok Road_Lung Ma Road_R.xls	REVIEWED BY:	SC	Jul-24

ARM			Α	В	С	D			
NPUT	PARA	AMETERS:							
V	=	Approach half width (m)	3.0	7.5	3.5	7.5			
E	=	Entry width (m)	5.5	8.0	5.5	9.0			
L	=	Effective length of flare (m)	25	30	15	25			
R	=	Entry radius (m)	50	20	60	35			
)	=	Inscribed circle diameter (m)	50	50	50	50			
4	=	Entry angle (degree)	25	35	20	25			
Q	=	Entry flow (pcu/h)	0	1033	67	1462			
Qc	=	Circulating flow across entry (pcu/h)	1617	541	968	155			
OUTPI	UT PA	ARAMETERS:							
S	=	Sharpness of flare = 1.6(E-V)/L	0.16	0.03	0.21	0.10			
<	=	1-0.00347(A-30)-0.978(1/R-0.05)	1.05	0.98	1.07	1.04			
X2	=	V + ((E-V)/(1+2S))	4.89	7.97	4.90	8.76			
М	=	EXP((D-60)/10)	0	0	0	0			
F	=	303*X2	1483	2416	1485	2654			
Td	=	1+(0.5/(1+M))	1.37	1.37	1.37	1.37			
Fc	=	0.21*Td(1+0.2*X2)	0.57	0.74	0.57	0.79			
Qe	=	K(F-Fc*Qc)	592	1979	999	2628	Total In Sum =	2562	PCU
DFC	=	Design flow/Capacity = Q/Qe	0.00	0.52	0.07	0.56	DFC of Critical Approach =	0.56	

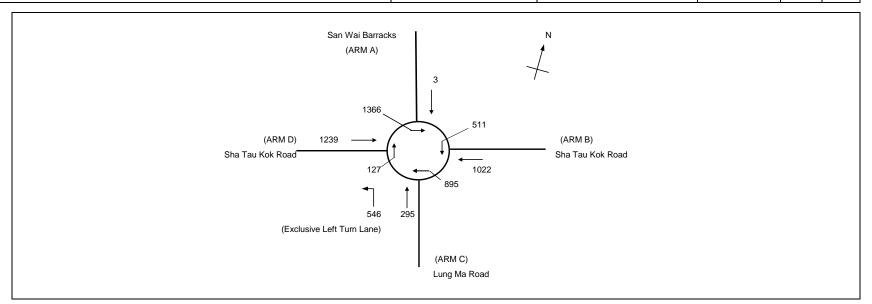

OZZO TECHNOLOGY (HK) LIMITED	PRIORITY JUNCT	INITIALS	DATE		
Proposed Temporary Public Vehicle Park and Shop and Services at Lot 896	RP (Part) in DD 83, Ma Liu Shui San T	SI PROJECT NO.: 83007	PREPARED BY:	CW	Jul-24
J2: Lung Ma Road / Hai Wing Road	2024_AM	FILENAME :	CHECKED BY:	DP	Jul-24
2024 Observed AM Peak Hour Traffic Flow	2024_AIVI	J2_Lung Ma Road_Hai Wing Road_P.xls	REVIEWED BY:	SC	Jul-24


```
NOTES: (GEOMETRIC INPUT DATA)
 W =
             MAJOR ROAD WIDTH
             CENTRAL RESERVE WIDTH
 W cr =
             LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-a
 W b-a =
 W b-c =
             LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-c
             LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM c-b
 W c-b =
 VI b-a =
             VISIBILITY TO THE LEFT FOR VEHICLES WAITING IN STREAM b-a
             VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-a
 Vr b-a =
 Vr b-c =
             VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-c
 Vr c-b =
             VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM c-b
             STREAM-SPECIFIC B-A
   D =
             STREAM-SPECIFIC B-C
             STREAM-SPECIFIC C-B
             (1-0.0345W)
```

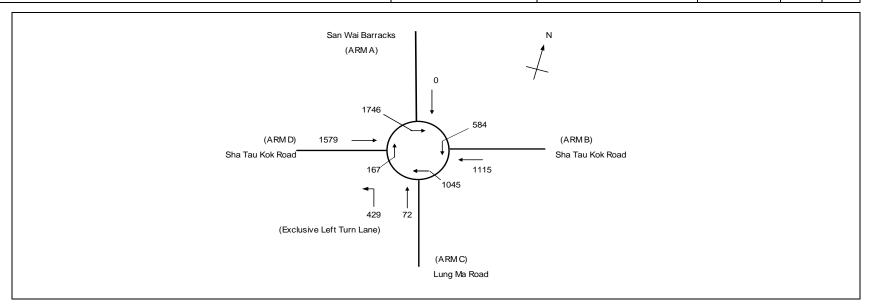
GEOMETRIC DETAILS:		GEOMETRIC FACT	ORS:		THE CAPACITY OF M	OVEME	NT:		COMPARISION OF DESIGN FLOW TO CAPACITY:		
MAJOR ROAD (ARM A	A)										
W = 7.2	(metres)	D	=	0.6956314	Q b-a =	238			DFC b-a	=	0.0546
W cr = 0.0	(metres)	E	=	0.732552	Q b-c =	433	Q b-c (O) =	427.1	DFC b-c	=	0.0277
q a-b = 19	(pcu/hr)	F	=	0.9460327	Q c-b =	556			DFC c-b	=	0.0000
q a-c = 557	(pcu/hr)	Y	=	0.750565	Q b-ac = Q c-a =	303.6 1800			DFC b-ac	=	0.0395
MAJOR ROAD (ARM C	:)	F for (Qb-a	ic) =	0.48	TOTAL FLOW	=	1357	(PCU/HR)			
W c-b = 3.6	(metres)										
Vr c-b = 65	(metres)										
q c-a = 756	(pcu/hr)										
q c-b = 0	(pcu/hr)										
									CRITICAL DFC	=	0.05
MINOR ROAD (ARM B)										
W b-a = 1.5	(metres)										
W b-c = 1.5	(metres)										
VI b-a = 66	(metres)										
Vr b-a = 29	(metres)										
Vr b-c = 29	(metres)										
q b-a = 13	(pcu/hr)										
q b-c = 12	(pcu/hr)										

OZZO TECHNOLOGY (HK) LIMITED	PRIORITY JUNCT	ION CALCULATION		INITIALS	DATE
Proposed Temporary Public Vehicle Park and Shop and Services at Lot 896	RP (Part) in DD 83, Ma Liu Shui San Ts	PROJECT NO.: 83007	PREPARED BY:	CW	Jul-24
J2: Lung Ma Road / Hai Wing Road	2024 PM	FILENAME :	CHECKED BY:	DP	Jul-24
2024 Observed PM Peak Hour Traffic Flow	Z024_F IVI	J2_Lung Ma Road_Hai Wing Road_P.xls	REVIEWED BY:	SC	Jul-24

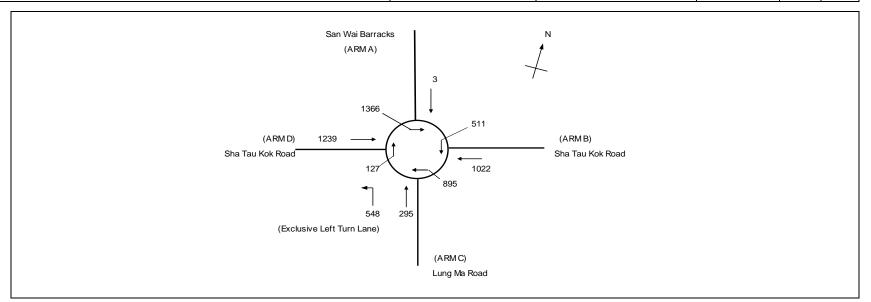

```
NOTES: (GEOMETRIC INPUT DATA)
 W =
             MAJOR ROAD WIDTH
             CENTRAL RESERVE WIDTH
 W cr =
 W b-a =
             LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-a
 W b-c =
             LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-c
 W c-b =
             LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM c-b
 VI b-a =
             VISIBILITY TO THE LEFT FOR VEHICLES WAITING IN STREAM b-a
 Vr b-a =
             VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-a
 Vr b-c =
             VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-c
 Vr c-b =
             VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM c-b
             STREAM-SPECIFIC B-A
   D =
             STREAM-SPECIFIC B-C
             STREAM-SPECIFIC C-B
             (1-0.0345W)
```


```
GEOMETRIC DETAILS:
                                          GEOMETRIC FACTORS:
                                                                                       THE CAPACITY OF MOVEMENT:
                                                                                                                                               COMPARISION OF DESIGN FLOW
                                                                                                                                               TO CAPACITY:
 MAJOR ROAD (ARM A)
                                                                                                                                                             DFC b-a
                                                                                                                                                                                        0.0397
  W =
               7.2 (metres)
                                                    D
                                                                  0.6956314
                                                                                              Q b-a =
                                                                                                           277
                                                     Ε
                                                                   0.732552
                                                                                              Q b-c =
                                                                                                           436
                                                                                                                  Q b-c (O) = 431.7
                                                                                                                                                             DFC b-c
                                                                                                                                                                                        0.0046
 W cr =
               0.0
                     (metres)
 q a-b =
                30
                     (pcu/hr)
                                                                  0.9460327
                                                                                              Q c-b =
                                                                                                           559
                                                                                                                                                             DFC c-b
                                                                                                                                                                                        0.0089
                                                                                                                                                             DFC b-ac
               536 (pcu/hr)
                                                                   0.750565
                                                                                              Q b-ac =
                                                                                                          293.5
                                                                                                                                                                                        0.0068
 q a-c =
                                                                                             Q c-a =
                                                                                                           1784
 MAJOR ROAD (ARM C)
                                                F for (Qb-ac) =
                                                                  0.1538462
                                                                                              TOTAL FLOW = 1030
                                                                                                                             (PCU/HR)
 W c-b =
               3.6
                     (metres)
 Vr c-b =
                     (metres)
               446
                     (pcu/hr)
 q c-a =
                     (pcu/hr)
 q c-b =
                                                                                                                                               CRITICAL DFC
                                                                                                                                                                                 = 0.04
MINOR ROAD (ARM B)
 W b-a =
               1.5 (metres)
 W b-c =
               1.5 (metres)
 VI b-a =
                66 (metres)
 Vr b-a =
                29 (metres)
 Vr b-c =
                    (metres)
 q b-a =
                11 (pcu/hr)
 q b-c =
                 2 (pcu/hr)
```

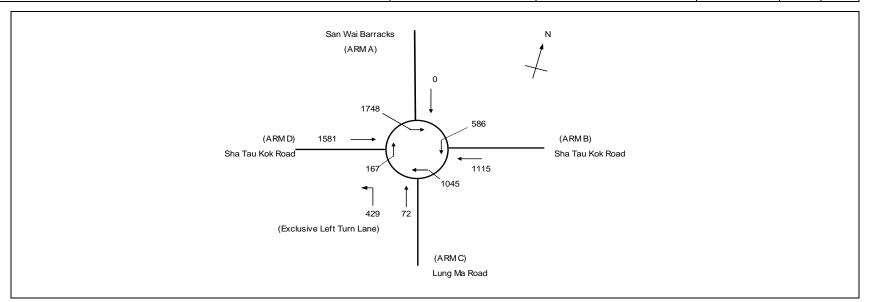
Proposed Temporary Public Vehicle Park and Shop and Services at Lot 896 RP (Part) in DD 83, Ma Liu Shui San Tsuen, Fanling Traffic Review


Appendix B

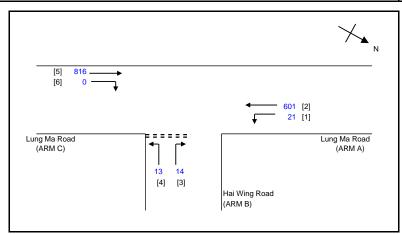
OZZO TECHNOLOGY (HK) LIMITED	TRAFFIC	INITIALS	DATE		
Proposed Temporary Public Vehicle Park and Shop and Services at Lot 896 RF	P (Part) in DD 83, Ma Liu Shui \$	PROJECT NO.: 83007	PREPARED BY:	CW	Jul-24
J1: Sha Tau Kok Road / Lung Ma Road	2027Ref AM	FILENAME :	CHECKED BY:	DP	Jul-24
2027 Reference AM Peak Hour Traffic Flows	ZUZ/Rei_AW	_Sha Tau Kok Road_Lung Ma Road_R.xls	REVIEWED BY:	SC	Jul-24


ARM			Α	В	С	D			
NPUT	PARA	AMETERS:							
/	=	Approach half width (m)	3.0	7.5	3.5	7.5			
•	=	Entry width (m)	5.5	8.0	5.5	9.0			
-	=	Effective length of flare (m)	25	30	15	25			
₹	=	Entry radius (m)	50	20	60	35			
)	=	Inscribed circle diameter (m)	50	50	50	50			
A	=	Entry angle (degree)	25	35	20	25			
Q	=	Entry flow (pcu/h)	3	1022	295	1239			
Qс	=	Circulating flow across entry (pcu/h)	1366	511	895	127			
OUTP	UT PA	RAMETERS:							
S	=	Sharpness of flare = 1.6(E-V)/L	0.16	0.03	0.21	0.10			
<	=	1-0.00347(A-30)-0.978(1/R-0.05)	1.05	0.98	1.07	1.04			
X2	=	V + ((E-V)/(1+2S))	4.89	7.97	4.90	8.76			
M	=	EXP((D-60)/10)	0	0	0	0			
=	=	303*X2	1483	2416	1485	2654			
Γd	=	1+(0.5/(1+M))	1.37	1.37	1.37	1.37			
Fc	=	0.21*Td(1+0.2*X2)	0.57	0.74	0.57	0.79			
Qe	=	K(F-Fc*Qc)	741	2001	1043	2651	Total In Sum =	2556	PCU
DFC	=	Design flow/Capacity = Q/Qe	0.00	0.51	0.28	0.47	DFC of Critical Approach =	0.51	

OZZO TECHNOLOGY (HK) LIMITED	TRAFFIC	SIGNAL CALCULATION	1	INITIALS	DATE
Proposed Temporary Public Vehicle Park and Shop and Services at Lot 896 RF	P (Part) in DD 83, Ma Liu Shui \$	PROJECT NO.: 83007	PREPARED BY:	CW	Jul-24
J1: Sha Tau Kok Road / Lung Ma Road	2027Ref PM	FILENAME :	CHECKED BY:	DP	Jul-24
2027 Reference PM Peak Hour Traffic Flows	ZUZ/Rei_Pivi	_Sha Tau Kok Road_Lung Ma Road_R.xls	REVIEWED BY:	SC	Jul-24

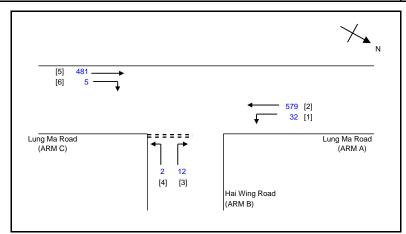

ARM			Α	В	С	D			
NPUT	PARA	AMETERS:							
V	=	Approach half width (m)	3.0	7.5	3.5	7.5			
•	=	Entry width (m)	5.5	8.0	5.5	9.0			
-	=	Effective length of flare (m)	25	30	15	25			
₹	=	Entry radius (m)	50	20	60	35			
)	=	Inscribed circle diameter (m)	50	50	50	50			
A	=	Entry angle (degree)	25	35	20	25			
Q	=	Entry flow (pcu/h)	0	1115	72	1579			
Qс	=	Circulating flow across entry (pcu/h)	1746	584	1045	167			
OUTP	JT PA	RAMETERS:							
S	=	Sharpness of flare = 1.6(E-V)/L	0.16	0.03	0.21	0.10			
<	=	1-0.00347(A-30)-0.978(1/R-0.05)	1.05	0.98	1.07	1.04			
X2	=	V + ((E-V)/(1+2S))	4.89	7.97	4.90	8.76			
M	=	EXP((D-60)/10)	0	0	0	0			
=	=	303*X2	1483	2416	1485	2654			
Γd	=	1+(0.5/(1+M))	1.37	1.37	1.37	1.37			
Fc	=	0.21*Td(1+0.2*X2)	0.57	0.74	0.57	0.79			
Qe	=	K(F-Fc*Qc)	515	1947	952	2619	Total In Sum =	2766	PCU
DFC	=	Design flow/Capacity = Q/Qe	0.00	0.57	0.08	0.60	DFC of Critical Approach =	0.60	

OZZO TECHNOLOGY (HK) LIMITED	TRAFFIC	SIGNAL CALCULATION	1	INITIALS	DATE
Proposed Temporary Public Vehicle Park and Shop and Services at Lot 896 RF	P (Part) in DD 83, Ma Liu Shui S	PROJECT NO.: 83007	PREPARED BY:	CW	Jul-24
J1: Sha Tau Kok Road / Lung Ma Road	2027Des_AM	FILENAME :	CHECKED BY:	DP	Jul-24
2027 Design AM Peak Hour Traffic Flows	2027 Des_Aivi	_Sha Tau Kok Road_Lung Ma Road_R.xls	REVIEWED BY:	SC	Jul-24


ARM			Α	В	С	D			
NPUT	PARA	AMETERS:							
/	=	Approach half width (m)	3.0	7.5	3.5	7.5			
•	=	Entry width (m)	5.5	8.0	5.5	9.0			
-	=	Effective length of flare (m)	25	30	15	25			
₹	=	Entry radius (m)	50	20	60	35			
)	=	Inscribed circle diameter (m)	50	50	50	50			
A	=	Entry angle (degree)	25	35	20	25			
Q	=	Entry flow (pcu/h)	3	1022	295	1239			
Qс	=	Circulating flow across entry (pcu/h)	1366	511	895	127			
OUTP	UT PA	RAMETERS:							
S	=	Sharpness of flare = 1.6(E-V)/L	0.16	0.03	0.21	0.10			
<	=	1-0.00347(A-30)-0.978(1/R-0.05)	1.05	0.98	1.07	1.04			
X2	=	V + ((E-V)/(1+2S))	4.89	7.97	4.90	8.76			
M	=	EXP((D-60)/10)	0	0	0	0			
=	=	303*X2	1483	2416	1485	2654			
Γd	=	1+(0.5/(1+M))	1.37	1.37	1.37	1.37			
Fc	=	0.21*Td(1+0.2*X2)	0.57	0.74	0.57	0.79			
Qe	=	K(F-Fc*Qc)	741	2001	1043	2651	Total In Sum =	2556	PCU
DFC	=	Design flow/Capacity = Q/Qe	0.00	0.51	0.28	0.47	DFC of Critical Approach =	0.51	

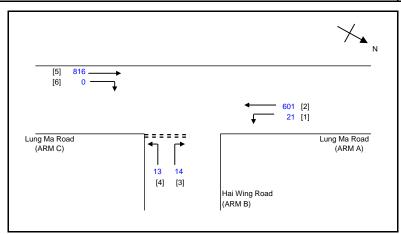
OZZO TECHNOLOGY (HK) LIMITED	TRAFFIC	SIGNAL CALCULATION	١	INITIALS	DATE
Proposed Temporary Public Vehicle Park and Shop and Services at Lot 896 RF	P (Part) in DD 83, Ma Liu Shui S	PROJECT NO.: 83007	PREPARED BY:	CW	Jul-24
J1: Sha Tau Kok Road / Lung Ma Road	2027Des_PM	FILENAME :	CHECKED BY:	DP	Jul-24
2027 Design PM Peak Hour Traffic Flows	2027 Des_Pivi	_Sha Tau Kok Road_Lung Ma Road_R.xls	REVIEWED BY:	SC	Jul-24

ARM			Α	В	С	D			
NPUT	PARA	AMETERS:							
V	=	Approach half width (m)	3.0	7.5	3.5	7.5			
•	=	Entry width (m)	5.5	8.0	5.5	9.0			
-	=	Effective length of flare (m)	25	30	15	25			
₹	=	Entry radius (m)	50	20	60	35			
)	=	Inscribed circle diameter (m)	50	50	50	50			
4	=	Entry angle (degree)	25	35	20	25			
Q	=	Entry flow (pcu/h)	0	1115	72	1581			
Qс	=	Circulating flow across entry (pcu/h)	1748	586	1045	167			
OUTP	JT PA	RAMETERS:							
S	=	Sharpness of flare = 1.6(E-V)/L	0.16	0.03	0.21	0.10			
K	=	1-0.00347(A-30)-0.978(1/R-0.05)	1.05	0.98	1.07	1.04			
X2	=	V + ((E-V)/(1+2S))	4.89	7.97	4.90	8.76			
М	=	EXP((D-60)/10)	0	0	0	0			
=	=	303*X2	1483	2416	1485	2654			
Td	=	1+(0.5/(1+M))	1.37	1.37	1.37	1.37			
Fc	=	0.21*Td(1+0.2*X2)	0.57	0.74	0.57	0.79			
Qe	=	K(F-Fc*Qc)	514	1946	952	2619	Total In Sum =	2768	PCU
DFC	=	Design flow/Capacity = Q/Qe	0.00	0.57	0.08	0.60	DFC of Critical Approach =	0.60	


OZZO TECHNOLOGY (HK) LIMITED	PRIORITY J	UNCTION CAL	CULATION		INITIALS	DATE
Proposed Temporary Public Vehicle Park and Shop and Services at Lot 896	RP (Part) in DD 83, Ma Liu S	Shui San Tsi _{PROJECT} N	O.: 83007	PREPARED BY:	CW	Jul-24
J2: Lung Ma Road / Hai Wing Road	2027Ref	FILENAME :		CHECKED BY:	DP	Jul-24
2027 Reference AM Peak Hour Traffic Flow	2027 (161)		Ma Road_Hai Wing Road_P.xls	REVIEWED BY:	SC	Jul-24

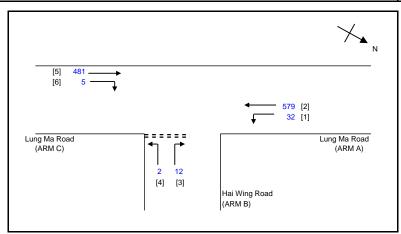

```
NOTES: (GEOMETRIC INPUT DATA)
 W =
             MAJOR ROAD WIDTH
             CENTRAL RESERVE WIDTH
 W cr =
             LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-a
 W b-a =
 W b-c =
             LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-c
             LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM c-b
 W c-b =
 VI b-a =
             VISIBILITY TO THE LEFT FOR VEHICLES WAITING IN STREAM b-a
             VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-a
 Vr b-a =
 Vr b-c =
             VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-c
 Vr c-b =
             VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM c-b
             STREAM-SPECIFIC B-A
   D =
             STREAM-SPECIFIC B-C
             STREAM-SPECIFIC C-B
             (1-0.0345W)
```

OMETRIC DETAILS	S:		GEOMETRIC FAC	TORS:		THE CAPACITY OF MO	VEME	NT:		COMPARISION OF DESIGN FLOW TO CAPACITY:		
MAJOR ROAD	(ARM A)											
W =	7.2	(metres)	D	=	0.6956314	Q b-a =	223			DFC b-a	=	0.0628
W cr =	0.0	(metres)	E	=	0.732552	Q b-c =	424	Q b-c (O) =	417.3	DFC b-c	=	0.0307
q a-b =	21	(pcu/hr)	F	=	0.9460327	Q c-b =	544			DFC c-b	=	0.0000
q a-c =	601	(pcu/hr)	Υ	=	0.750565	Q b-ac =	289			DFC b-ac	=	0.0450
						Q c-a =	1800					
MAJOR ROAD	(ARM C)		F for (Qb	-ac) =	0.4814815	TOTAL FLOW	=	1465	(PCU/HR)			
W c-b =	3.6	(metres)										
Vr c-b =	65	(metres)										
q c-a =	816	(pcu/hr)										
q c-b =	0	(pcu/hr)										
										CRITICAL DFC	=	0.06
MINOR ROAD	(ARM B)											
W b-a =	1.5	(metres)										
W b-c =	1.5	(metres)										
VI b-a =	66	(metres)										
Vr b-a =	29	(metres)										
Vr b-c =	29	(metres)										
q b-a =	14	(pcu/hr)										
q b-c =	13	(pcu/hr)										


OZZO TECHNOLOGY (HK) LIMITED	ICTION CALCULATION		INITIALS	DATE	
Proposed Temporary Public Vehicle Park and Shop and Services at Lot 896	RP (Part) in DD 83, Ma Liu Shui	San Tsi PROJECT NO.: 83007	PREPARED BY:	CW	Jul-24
J2: Lung Ma Road / Hai Wing Road	2027Ref PM	FILENAME :	CHECKED BY:	DP	Jul-24
2027 Reference PM Peak Hour Traffic Flow	2027 NGI_FIN	J2_Lung Ma Road_Hai Wing Road_P.xls	REVIEWED BY:	SC	Jul-24


```
NOTES: (GEOMETRIC INPUT DATA)
 W =
             MAJOR ROAD WIDTH
             CENTRAL RESERVE WIDTH
 W cr =
             LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-a
 W b-a =
 W b-c =
             LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-c
             LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM c-b
 W c-b =
 VI b-a =
             VISIBILITY TO THE LEFT FOR VEHICLES WAITING IN STREAM b-a
             VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-a
 Vr b-a =
 Vr b-c =
             VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-c
 Vr c-b =
             VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM c-b
             STREAM-SPECIFIC B-A
   D =
             STREAM-SPECIFIC B-C
             STREAM-SPECIFIC C-B
             (1-0.0345W)
```

METRIC DETAILS:	GEOMETRIC FACTORS:	THE CAPACITY OF MOVEMENT:	COMPARISION OF DESIGN FLOW TO CAPACITY:	
MAJOR ROAD (ARM A)				
W = 7.2 (metres)	D = 0.6956314	Q b-a = 265	DFC b-a	= 0.0453
W cr = 0.0 (metres)	E = 0.732552	Q b-c = 427 Q b-c (O) = 422.2	DFC b-c	= 0.0047
q a-b = 32 (pcu/hr)	F = 0.9460327	Q c-b = 547	DFC c-b	= 0.0091
q a-c = 579 (pcu/hr)	Y = 0.750565	Q b-ac = 280.2 Q c-a = 1784	DFC b-ac	= 0.0071
MAJOR ROAD (ARM C)	F for (Qb-ac) = 0.1428571	TOTAL FLOW = 1111 (PCU/HR)		
W c-b = 3.6 (metres)				
Vr c-b = 65 (metres)				
q c-a = 481 (pcu/hr)				
q c-b = 5 (pcu/hr)				
			CRITICAL DFC	= 0.05
MINOR ROAD (ARM B)				
W b-a = 1.5 (metres)				
W b-c = 1.5 (metres)				
VI b-a = 66 (metres)				
Vr b-a = 29 (metres)				
Vr b-c = 29 (metres)				
q b-a = 12 (pcu/hr)				


OZZO TECHNOLOGY (HK) LIMITED PRIORITY JUNCTION CALCULATION						DATE
Proposed Temporary Public Vehicle Park and Shop and Services at Lot	in DD 83, Ma Liu Shui San Ts	PROJECT NO.: 83007	PREPARED BY:	CW	Jul-24	
J2: Lung Ma Road / Hai Wing Road	2027Des_AM	FILENAME :	CHECKED BY:	DP	Jul-24	
2027 Design AM Peak Hour Traffic Flow		2021 Des_Alvi	J2_Lung Ma Road_Hai Wing Road_P.xls	REVIEWED BY:	SC	Jul-24


```
NOTES: (GEOMETRIC INPUT DATA)
 W =
             MAJOR ROAD WIDTH
             CENTRAL RESERVE WIDTH
 W cr =
             LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-a
 W b-a =
 W b-c =
             LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-c
             LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM c-b
 W c-b =
 VI b-a =
             VISIBILITY TO THE LEFT FOR VEHICLES WAITING IN STREAM b-a
             VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-a
 Vr b-a =
 Vr b-c =
             VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-c
 Vr c-b =
             VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM c-b
             STREAM-SPECIFIC B-A
   D =
             STREAM-SPECIFIC B-C
             STREAM-SPECIFIC C-B
             (1-0.0345W)
```

METRIC DETAIL	S:		GEOMETRIC FAC	CTORS:		THE CAPACITY OF MC	VEME	NT:		COMPARISION OF DESIGN FLOW TO CAPACITY:		
MAJOR ROA	D (ARM A)											
W =	7.2	(metres)	D	=	0.6956314	Q b-a =	223			DFC b-a	=	0.0628
W cr =	0.0	(metres)	E	=	0.732552	Q b-c =	424	Q b-c (O) =	417.3	DFC b-c	=	0.0307
q a-b =	21	(pcu/hr)	F	=	0.9460327	Q c-b =	544			DFC c-b	=	0.0000
q a-c =	601	(pcu/hr)	Υ	=	0.750565	Q b-ac =	289			DFC b-ac	=	0.0450
						Q c-a =	1800					
MAJOR ROAL	(ARM C)		F for (Qb	-ac) =	0.4814815	TOTAL FLOW	=	1465	(PCU/HR)			
W c-b =	3.6	(metres)										
Vr c-b =	65	(metres)										
q c-a =	816	(pcu/hr)										
q c-b =	0	(pcu/hr)										
										CRITICAL DFC	=	0.06
MINOR ROAD	(ARM B)											
W b-a =	1.5	(metres)										
W b-c =	1.5	(metres)										
VI b-a =	66	(metres)										
Vr b-a =	29	(metres)										
Vr b-c =	29	(metres)										
q b-a =	14	(pcu/hr)										
q b-c =	13	(pcu/hr)										

OZZO TECHNOLOGY (HK) LIMITED PRIORITY JUNCTION CALCULATION						DATE
Proposed Temporary Public Vehicle Park and Shop and Services at Lot	in DD 83, Ma Liu Shui San Ts	PROJECT NO.: 83007	PREPARED BY:	CW	Jul-24	
J2: Lung Ma Road / Hai Wing Road	2027Des_PM	FILENAME :	CHECKED BY:	DP	Jul-24	
2027 Design PM Peak Hour Traffic Flow		2027 Des_Fivi	J2_Lung Ma Road_Hai Wing Road_P.xls	REVIEWED BY:	SC	Jul-24


```
NOTES: (GEOMETRIC INPUT DATA)
 W =
             MAJOR ROAD WIDTH
             CENTRAL RESERVE WIDTH
 W cr =
 W b-a =
             LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-a
 W b-c =
             LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-c
 W c-b =
             LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM c-b
 VI b-a =
             VISIBILITY TO THE LEFT FOR VEHICLES WAITING IN STREAM b-a
 Vr b-a =
             VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-a
 Vr b-c =
             VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-c
 Vr c-b =
             VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM c-b
             STREAM-SPECIFIC B-A
   D =
             STREAM-SPECIFIC B-C
             STREAM-SPECIFIC C-B
             (1-0.0345W)
```

```
GEOMETRIC DETAILS:
                                          GEOMETRIC FACTORS:
                                                                                       THE CAPACITY OF MOVEMENT:
                                                                                                                                               COMPARISION OF DESIGN FLOW
                                                                                                                                              TO CAPACITY:
 MAJOR ROAD (ARM A)
                                                                                                                                                             DFC b-a
  W =
               7.2 (metres)
                                                    D
                                                                  0.6956314
                                                                                              Q b-a =
                                                                                                           265
                                                                                                                                                                                        0.0453
                                                    Ε
                                                                   0.732552
                                                                                              Q b-c =
                                                                                                           427
                                                                                                                                                             DFC b-c
                                                                                                                                                                                        0.0047
 W cr =
               0.0
                     (metres)
                                                                                                                  Q b-c (O) = 422.2
 q a-b =
                32 (pcu/hr)
                                                                  0.9460327
                                                                                              Q c-b =
                                                                                                           547
                                                                                                                                                             DFC c-b
                                                                                                                                                                                        0.0091
                                                                                                                                                             DFC b-ac
               579 (pcu/hr)
                                                                   0.750565
                                                                                             Q b-ac =
                                                                                                          280.2
                                                                                                                                                                                        0.0071
 q a-c =
                                                                                             Q c-a =
                                                                                                          1784
 MAJOR ROAD (ARM C)
                                                F for (Qb-ac) =
                                                                  0.1428571
                                                                                              TOTAL FLOW = 1111
                                                                                                                             (PCU/HR)
 W c-b =
               3.6
                     (metres)
 Vr c-b =
                     (metres)
               481
                     (pcu/hr)
 q c-a =
                    (pcu/hr)
 q c-b =
                                                                                                                                               CRITICAL DFC
                                                                                                                                                                                 = 0.05
MINOR ROAD (ARM B)
 W b-a =
               1.5 (metres)
 W b-c =
               1.5 (metres)
 VI b-a =
                66 (metres)
 Vr b-a =
                29 (metres)
 Vr b-c =
                29 (metres)
 q b-a =
                12 (pcu/hr)
 q b-c =
                 2 (pcu/hr)
```